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AND STABILITY OF STATIONARY STATES IN MEDIA 

WITH A NONLINEAR OHM'S LAW 
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The pr inciples  of propagat ion and development  of sma l l  d i s tu rbances  in nonlinear conduct- 
ing media  a re  s tudied.  

It is well known that  in some media ,  for  example ,  in nonequil ibr ium p lasma  [1] and semiconduc tors  
[2], there  is a nonlinear re la t ionship  between cu r r en t  densi ty j and e l ec t r i c  field E .  This re la t ionship  is  
usual ly de te rmined  f rom examinat ion  of charge  c a r r i e r  k inet ics ,  or  f rom exper iment .  

One of the poss ib le  approaches  for  the descr ip t ion  of e l ec t r i ca l  phenomena in nonlinear  conductors  is the 
d i r ec t  introduction of a model function j(E) in the s y s t e m  of e l ec t rodynamic  equations.  Such a function 
t r e a t s  the ma t e r i a l  equation of the medium as  given and comple tes  the s y s t e m  of Maxwell equat ions.  This 
approach  was used in s e v e r a l  s tudies [3-8] and will evidently be developed fur ther .  

The introduction of a nonlinear ohmic law adds additional diff icult ies  to the procedure  of solving s ta -  
t i ona ry - s t a t e  p rob l ems ,  connected not only with the nonlineari ty of the or iginal  equations,  but a lso  with the 
change in type of these equations [3] in a r e a s  with a falling v o l t - a m p e r e  c h a r a c t e r i s t i c  j = j(E). The l a t t e r  
s i tuat ion may lead to instabi l i ty  of the s t a t ionary  s tate  [4]. 

The instabi l i ty  of  homogeneous s ta t ionary  cu r r en t  dis t r ibut ions with negative different ia l  conductivity 
(or d = dj/dE < 0) has  been  examined repea ted ly  in the l i t e ra tu re  (see, e .g. ,  [2]). In these s tudies  the analys is  
of  sma l l  d i s tu rbances  was conducted on the bas i s  of the s y s t e m  of field equations and var ious  par t ia l  solu- 
tions of the kinetic equations for  charge  c a r r i e r s .  Due to the unwieldiness of the sy s t em,  only potential  d is-  
tu rbances  of the e l ec t r i c  field have been s t r i c t l y  examined,  as a rule .  The use of a model c h a r a c t e r i s t i c  
j(E) pe rmi t s  a more  detai led study of propagat ion of al l  poss ible  e lec t romagne t ic  d is turbances  and the 
initial  s tage of development  of instabi l i ty ,  independent of the mechan i sm of nonlinear  conductivity.  

This study will examine  the ef fec t  of an i so t ropy  in propagat ion of sma l l  d i s tu rbances ,  and the var ious  
types of waves  in nonl inear ly  conductive media .  The c r i t e r i a  for t ime damping of a r b i t r a r i l y  or iented ha r -  
monics  of ini t ial  f luctuations occur r ing  on a background of homogeneous cu r r en t  dis t r ibut ion in an infinite 
space a r e  found. The damping c r i t e r i a  for  ampli tude of ha rmonic  osci l la t ions  or iented in the d i rec t ion  of 
wave propagat ion a r e  also found. 

A formula t ion  of the s tabi l i ty  p rob lem for  a bounded region is  given. For  a homogeneous cu r r en t  
s ta te  the example  of i nc remen ta l  turbulent  d i s tu rbances  for  the case  er d < 0 is cons t ruc ted .  The asympto t ic  
s tabi l i ty  of inhomogeneous c u r r e n t  d is t r ibut ions  for  a > 0 is  p roven  by the ene rgy  method.  The ques -  
t-ion of a connection between the s tabi l i ty  conditions and the e x t r e m a l  pr inc ip le  of  min imum Joulean 
diss ipat ion is examined.  It  is shown that  for  a nonlinearly conductive medium this pr inciple  is inadequate 
as  a s tabi l i ty  condition even for  the re la t ive ly  s imple  case  examined in [9]. 
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1 .  An  A n a l y s i s  o f  t h e  D i s p e r s i o n  E q u a t i o n s  

a n d  V a r i o u s  T y p e s  o f  D i s t u r b a n c e s  

We will examine immobile conductors with values of dielectr ic  and magnetic permeabil i ty close to 
unity. The sys tem of e lectromagnet ic  equations in this case will have the form 

rot E = -- c-lOH/~Ot, rot H = 4~c-Zj + c-~OE:/Ot (1.1) 

divE-----4gpe, d iv :H~0,  j = ~ ( E )  E 

The descript ion of Ohm's  law in the last  equation of Eq. (1.1) assumes  a single-valued function j(E), 
which corresponds  to a monotonic or  N-shaped vo l t - ampere  charac te r i s t i c .  We will examine dis turbances 
of a homogeneous state which is charac te r ized  by a given point (E 0, J0) on this curve.  In the case where the 
charac te r i s t i c  is S-shaped, i .e. ,  the function j(E) is not single-valued, in ana lys i s  of smal l  disturbances 
only the one single-valued branch containing the point, (E 0, J0) must  be examined. It need only be assumed 
that the cur ren t  studied does not unite the two single-valued branches .  

The use of Chin's law in the form of Eq. (1.1) in describing nonstationary p rocesses  is based on a 
ser ies  of simplified assumptions on the dynamics of the e lectron gas.  In par t icular ,  the following condi- 
tions must be satisfied: 

o) ~ %, co~ ~ ve (1.2) 

Here,  w is the charac te r i s t i c  frequency of the process ,  v e is the effective e lectron coll ision frequency, and 
We is the L a r m o r  frequency. If the f i rs t  inequality of Eq. (1.2) is not fulfilled, e lec t ron  inert ia  must  be 
considered,  while if the second is not fulfilled, the Hall effect  must  be considered.  The Maxwell equations 
contain a displacement cur ren t  which becomes apparent  for w ~> 4 ~rcr. Frequency ranges for which the lat- 
t e r  inequality is compatible with the condition w << v e can exist  for quite low conductivity, for example, in 
the case of a low degree of ionization. 

We will examine a homogeneous s tat ionary state of the medium 

E - -  E o = c o n s t ,  J ----. Jo = ~ (Eo)  Eo = c o n s t  ( 1 . 3 )  

Equation (1.3) is charac te r ized  by an inhomogeneous magnetic field of the form 

Ho = 2nc-Z (jo • x) + YO 

where & is an a rb i t r a ry  ha rmonic  function. In the case of infinite cur ren t  space the field H 0 is unlimited 
for ]xl ~oo independent of the choice of a potential ~. 

At this point dis turbances throughout the entire space will be examined. The resul ts  of the analysis  
conducted below will qualitatively depict the behavior of dis turbances in a finite region far  f rom borde r s ,  
provided the l inear dimensions of the region significantly exceed the scale of the fluctuations. 

Small dis turbances applied to an a rb i t r a ry  inhomogeneous stat ionary state will sat isfy the following 
l inear sys tem:  

rot 6E ---- -- c-ZOSH / Ot, ro~ 8H -- 4~c-~6j + c-la~E/Ot 

6j = ~d (15E) I + ~ (bE -- (lbE) I) ~ ~a6E I[ + ~SE• (1.4) 

Here,  1 is a unit vec tor  directed along the undisturbed electr ic  field E 0 = E01, and the vectors  5E I[ and 
5E• are defined as the components parallel  to and perpendicular  to E 0 of the disturbance 5E. The regular  
conductivity e and differential conductivity ~d = dj/dE in Eqs. (1.4) are taken in the undisturbed state.  In 
the case of a homogeneous state [Eq. (1.3)] these values will be constant. System (1.4) does not include the 
equation div 5H = 0, which plays the role of an initial condition, nor the equation div 5E = 47rSpe, which 
serves  to determine the fluctuation in charge density. As a consequence of the nonlinear ohmic law, the 
relationship between small  dis turbances 5j and 5E proves to be of a tensor  nature. The last  equation of 
(1.4) can be wri t ten in the form 6j = a -6E, where cr is a symmet r i c  tensor  of second rank. For cr d ~ ~, 
"Ohm's law" for disturbances is charac te r ized  by spher ical  anisotropic conductivity. 
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As a consequence  of the s y m m e t r y  of  the t enso r  a the re  a lways  ex i s t  d i s t u rbances  5E, for  which 
5j I[SE (in c o n t r a s t  to the case  when conduct iv i ty  an i so t ropy  is p roduced  by the Hall effect) .  Any C a r t e s i a n  
base  ei  such that  ei = 1, f o r m s  a s y s t e m  of main  axes  for  the t e n s o r  a .  In this ba se ,  only the diagonal  e le-  
ments  of  the m a t r i x  II ~rij t[ a r e  nonze ro ,  while 

(~II = (~d~ ~22 = (~33 = ~ 

For  the case  of  a homogeneous  s t a t i ona ry  s ta te  [Eq. (1.3)] we will  examine . an  a r b i t r a r i l y  o r i en ted  
o n e - d i m e n s i o n a l  d i s tu rbance  of  the type 

(~E, 5 s  ~ H ) =  Re{(E', i ' ,  H')e~( k~-~o} (1.5) 

In Eq. (1.5) the complex  ampl i tudes  E ' ,  j ' ,  H '  a r e  cons tant .  The wave v e c t o r  k and f r equency  co will  
be complex  in the gene ra l  c a se .  We note that  the r e q u i r e m e n t s  of o n e - d i m e n s i o n a l i t y  demand  that  k = kn, 
whe re  n is a r e a l  uni t  vec to r ,  and k is a complex  number .  Subst i tut ion of the exponent ia l  equat ions  (1.5) in 
s y s t e m  (1.4) leads  to a homogeneous  a lgeb ra i c  s y s t e m  

n • E' = i x - l [ H  ' 

n •  = - -  i• [( l  --k ~ ) E ' - k  ' (k- -  1) (1E')_l] 

(~ ---- - -  ir / 4 ~ ,  u = ck / 4~t~, )~ ---- Zd / ~ --- d ln ] / d ln  E)  

(1.6) 

The dispersion equation corresponding to Eqo (i ,6) has the form 

~p, (~) p ,  (~) = o 
p , ( ~ ) - = - ~ + ~ + x ~ ,  p , ( ~ ) = ~ , + ( t + x ) ~ + ( ~ + x ~ ) ~ +  

+ • (sin~a _~ ~cos ~ a) (1.7) 

Here ,  ~ is the angle be tween  v e c t o r s  E0 andn .  Fo r  X~ 1 the roo t s  of  the polynomia l  P3(}) wil l  depend 
on the angle ~. T h e r e f o r e ,  fo r  d i f fe rence  in t rue  and d i f fe ren t ia l  conduct iv i ty  t oge the r  with an an i so t rop i c  
connect ion  be tween  the v e c t o r s  5j and 5E, a n i s o t r o p y  o c c u r s  in the p ropaga t ion  of  sma l l  d i s t u r b a n c e s .  

We note tha t  the r o o t  } = 0 in Eq. (1.7) m u s t  be d i s c a r d e d ,  s ince  it  c o r r e s p o n d s  to the nont r iv ia l  so lu-  
t ion  E '  = 0, H' = H'n s0 ,  incompat ib le  at ~r ~ 0 with the r e q u i r e m e n t  div 6 H =  O. Those  d i s t u rbances  which 
a r e  of  i n t e r e s t  a r e  d e t e r m i n e d  by  the r o o t s  of  the po lynomia l s  P2(~) and P3(~). 

We will  f i r s t  examine  the ques t ion  of  s tab i l i ty  of  the s ta te  of  Eq. (1.3), examin ing  the complex  func- 
t ion w(k) fo r  r e a l  va lues  of  the a r g u m e n t .  The funct ion w(k) is mul t iva lued ,  and each  of its s ingle-va lued  
b r a n c h e s  Cop(k) c o r r e s p o n d s  to one of  the roo t s  }p of Eq. (17). The s tabi l i ty  r e q u i r e m e n t  cons i s t s  of  a t ta in-  
ing fo r  al l  r e a l  k the condi t ion  

Imcov(k )<0  (p= t.2 . . . . .  5) (1.8) 

The s t a t i o n a r y  s ta te  will  be unstable  i f  fo r  s o m e  r e a l  k 0 even  one of  the values  r 0) fal ls  in the u p -  
pe r  s e m i s p a c e  Im w > 0. 

In as  much  as  ~ = - i w / 4 7 r a  and (r > 0 ,  the s tab i l i ty  r e q u i r e m e n t s  a r e  equiva len t  to Re }p < 0 fo r  any 
r e a l  u = ck/47rcr, 0 _< ~ __< 7r. 

The roo t s  of  the po lynomia l  P2(0  have the f o r m  

~1,~ = - 1/~ ( i  ___ ~ 4• 2) (I .9) 

F r o m  Eq. (1.9) fo r  all r ea l  v i t  fol lows that :  

Re ~1 < O, Re ~ % 0 

F o r  ~ ~ 0 t r a n s v e r s e  waves  c o r r e s p o n d  to these  roo t s ,  in which 6E II (n • 1), 5I-I [I (n • 6E).  The pa ra l -  
lel  o r i en ta t ion  of the v e c t o r  6E to a defined d i r ec t ion  d i s t inguished  these  d i s t u rbances  f r o m  t r a n s v e r s e  
waves  in a m e d i u m  with l i nea r  ohmic  law, where  6E can  have any d i r ec t ion  with r e s p e c t  to the plane of the 
w a v e ' f r o n t .  In a nonl inear  conduc to r  with ~ ~ 1, e l l ip t ica l  po la r i za t ion  of  d i s tu rbances  is poss ib le  only fo r  
the d i r ec t i ons  n = =~ 1. Some s i m i l a r i t y  can  be o b s e r v e d  in the b e h a v i o r  of  e l e c t r o m a g n e t i c  waves  in uni- 
axial  c r y s t a l s .  
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For ~ = 0 to the root  ~ there corresponds  a solution with 5It = 0, and a homogeneous disturbance 
5E, damping over  the c lass ic  time 1/4v~. The root  ~2 for ~ = 0 tends to zero ,  and to it corresponds  the 
solution 5E = 0, 514 = const. Thus, the disturbances related to the roots  of the polynomial 1~2(~) do not ' lead 
to instability. 

We note that the values of the roots ~,2 themselves  are obtained just as in the case of a l inearly con- 
ductive medium, in which case every  root  is twofold. 

The new (in compar ison with classic)  branches of the function w(k) can correspond to the roots of the 
polynomial l~a(~). Inasmuch as this polynomial is invariant  for a replacement  of a by ~r- (~, it is sufficient 
to examine the values 0 _ ~ _< ~ r .  For  a rb i t r a ry  values of ~ the analytic express ions  for the roots a re  
difficult to examine.  Therefore ,  we will p resent  the solution for the two l imiting cases  (~ = 0 and a = ~r ) ,  
and for intermediate angle values we will l imit  ourselves  to a careful  qualitative analysis .  

For  the case ~ = 0, the roots of Pa(~) have the form 

where ~1 and ~2 are determined by Eq. (1.9). The binary roots  ~ and ~4 correspond to damped t ransverse  
waves with elliptical or a rb i t r a ry  l inear  polarization.  The root  ~ cor responds  to a standing longitudinal 
wave: 5E lln, 5It = o, growing with time for ~< 0 and damping for h > 0. 

For  ~ = 1/2 ~, we obtain the following express ion for the roots :  

~3,4 = - -  1/~ ~ (t • ] /~  - -  4• ~ / ~ ) ,  ~ = - -  l 

The roots ~a,r for u ~ 0 cor respond to l inear ly  polarized t r ansver se  waves (SE Ill, 5H II (n • 1)), increas ing 
for ~< 0, and damping for h > 0. The root  ~5 cor responds  to a standing longitudinal wave (SE lln, 5H = 0) 
damping over  the time 1/4~ra. 

Thus, a conclusion on the instability of the state of Eq. (1.3) for ad < 0 follows from the limiting 
cases  examined. The increas ing disturbances 5E may be ei ther  potential, or  turbulent. It is cha rac te r i s -  
tic that in the examples above, of increasing waves,  the vec to r  5E is parallel  to the s tat ionary field E 0. The 
presence of increas ing standing waves in the case ad < 0 permits  the conclusion that the instability is a b -  
solute (in the terminology of [10]). An analogous derivation may be a r r ived  at on the basis of general  cr i -  
te r ia  examined in [11]. 

Now it must  be clarif ied whether the condition ad > 0 guarantees the fulfillment of the inequalities of 
Eq. (1.8) for a rb i t r a ry  rea l  k .  Fur the rmore ,  the determination of the region of wave vector  values in which 
fluctuations wilt damp, even for negative ad, is of in teres t .  

No mat te r  what the sign of ~d, disturbances related to the roots  of polynomial P2(0 will not increase .  
Therefore ,  for an  answer to these questions o n e m u s t  find the necessary  and sufficient conditions" under 
which all roots  of the polynomial P3(~) lie in the left  semispace  Re ~ < 0. Therefore ,  it is convenient to 
employ the Routh-Hurwitz  stability c r i t e r i a  [12], which lead to the following inequa l i t i e s :  

t ~- ~. > 0, u ~ (sin~a -k ~cos~a) > 0 (1.10) 

(l  -b ~) + u s (costa ~- ~sin2a) ~ 0 

From Eq. (1.10) it follows that for ~ > 0 and ~ ~ 0 any dis turbances of the type of Eq. (1.5) damp over  
t ime. For  )~ > 0, ~ = 0, one of the roots  of the polynomial P3(~) is equal to zero,  while the two others  are  
negative. To the zero root  there corresponds  a "neutral" disturbance 5H = const, 5E = 0. Thus, the state 
of Eq. (1.3) for ad > 0 is stable in relat ion to any sinusoidal disturbance.  

For  cr d < 0 a region of wave vec tor  values k, wherein all dis turbances will be damped, exists i f  the 
following conditions are  fulfilled: 

a = arc tg (1% l'I~), a+ = arc tg {(~ -- I ~ I + ~)'/' ] ~" t -'l' (t -- I ~" [ + u~Y '/'} 
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F r o m  Eq. (1.11) we conclude that  fo r  [ ~dl < ~r fo r  suff ic ient ly  s h o r t  waves  (k 2 > ko 2 = 167r2~ [ ~d])  
the re  ex i s t s  a r eg ion  of  d i r ec t ions  of wave v e c t o r s  M, in which all  d i s t u rbances  damp out with t ime .  The 
r eg ion  M is conta ined be tween  two c i r c u l a r  cones  with a p e r t u r e  angles  ~ + and (~_, and a c o m m o n  axis  di- 
r e c t e d  a long  the s t a t i o n a r y  field E 0. Fo r  X ~ 0 ,  ~_ 4 0 ,  a+  ~ r ,  so tha t  only long waves  (k 2 < ko 2) can in- 
c r e a s e ,  dependent  on d i r ec t i on  c lose  to the c o m m o n  axis  of the cones  and c lose  to the plane or thogonal  to 
this ax is .  Fo r  an  i n c r e a s e  in IX[ the field of s table  d i r ec t ions  n a r r o w s ,  d i s appea r ing  a t  7~ = - 1 ,  when 
m e r g e r  of the two bounda r i e s  of the a r e a  M with the conic  su r f ace  ~ = 1/4zr o c c u r s .  

We note the fol lowing pecu l i a r i t y  of  the nont r iv ia l  so lut ions  of  s y s t e m  (1.6), c o r r e s p o n d i n g  to roo t s  
o f  the po lynomia l  P3(~) for  s in  2~ ~ 0. In waves  d e s c r i b e d  by these  so lu t ions ,  nSE ~ 0 and n • 5E ~ 0. 
Consequent ly ,  in r e l a t i on  to d i s t u r b a n c e s  of the e l e c t r i c  field, such waves  will  be ne i ther  s t r i c t l y  longi tu-  
dinal  nor  s t r i c t l y  t r a n s v e r s e .  (An excep t ion  is the case  poss ib le  for  X< 0, when tg2a = - ~ .  In this ca se ,  
one of the roo t s  of  the po lynomia l  P3(~) goes  to z e r o ,  and the re  is a c o r r e s p o n d i n g  d i s tu rbance  5E [In, 
6H I1 (n • 1).) 

When d i s p l a c e m e n t  c u r r e n t s  a re  not c o n s i d e r e d ,  Eq. (1.4) b e c o m e s  nonevolu t ionary  for  the case  
cr d < 0. A c o r r e s p o n d i n g  example  was  developed in [4], where  the poss ib i l i ty  was  a l so  indicated  of  l imi t ing  
the g rowth  r a t e  of sho r twave  d i s t u rba nc e s  due to d i s p l a c e m e n t  c u r r e n t s .  The r e q u i r e m e n t  of evolut ion im-  
pl ies  that  al l  the  funct ions Cop(k) mus t ,  fo r  k ~oo,  sa t i s fy  the inequal i t ies  

Im o~p (k) < consL (1.12) 

An e v a l u a t i o n  of I m  Cop(k) fo r  the ca se  of  a r b i t r a r i l y  o r i e n t e d  d i s t u r b a n c e s  was  not p e r f o r m e d  in [4]. 
Such evalua t ion  can be obta ined by examina t ion  of the d i s p e r s i o n  equat ion  Eq. (1.7). The funct ions Col,2(k) 
c o r r e s p o n d i n g  to the roo t s  ~1,2 a r e  known to sa t i s fy  the r e q u i r e m e n t s  of Eq. (1.12), s ince  they a lways  pos-  
s e s s  a nonposi t ive  i m a g i n a r y  t e r m .  F o r  the funct ions Cop(k)corresponding to the roo t s  of the polynomia l  
P3(~), the fol lowing a s y m p o t i c  b e h a v i o r  o c c u r s  for  k ~ ~:  

r (k)  = ~ ck - -  2 h a  (cos 2 ct + X s i n  2 ct) ~ + 0 (k -1) 
o~ (k)  = - -  4m (sin 2 a + X cos ~ ~) ~ + O (~-~) 

T h e r e f o r e ,  inequal i ty  (1.12) is sa t i s f i ed  for  al l  b r a n c h e s  of the funct ions w(k), which p e r m i t s  making  
a conc lus ion  on the evolubi l i ty  of  s y s t e m  (1.4), i r r e s p e c t i v e  of the s ign of the d i f fe ren t ia l  conduct iv i ty .  

Close ly  connec ted  to the s tab i l i ty  p r o b l e m  examined  above is the ques t ion  of the poss ib i l i ty  of  amp l i -  
fying osc i l l a t ions  imposed  on the s t a t i o n a r y  s ta te  of  Eq. (1.3). The phys ica l  ba s i s  of  the ampl i f i ca t ion  
p r o b l e m  c o n s i s t s  of c l a r i fy ing  the condi t ions  under  which waves  p ropaga t ing  f r o m  an o s c i l l a t o r y  s o u r c e  
will  g row in  space  with d i s tance  t r a v e r s e d .  To find such condi t ions ,  i t  is n e c e s s a r y  to examine  all  b r a n c h e s  
kp of  the mul t iva lued  function k(co, (~) fo r  r e a l  w~ The damping condi t ion for  h a r m o n i c  osc i l l a t ions  in space  
c o n s i s t s  of  fulfi l l ing,  for  a l l  r ea l  w ~ 0 and 0 _< ~ _< ~v ,  the inequal i t ies  

o)RekvImk, > 0 (1.13) 

for  all  funct ions  kp(w, c~). If  Eq. (1.13) is sa t i s f ied ,  the ampl i tude  of  t r ave l ing  waves  damps  in the d i r ec t i on  
of  the phase  ve loc i ty  v = (w/Re k) n. 

Fo r  plane waves  of  the type of Eq. (1.5) with a r e a l  value of co, we will  examine  the e n e r g y  flux v e c t o r ,  
a v e r a g e d  o v e r  the pe r iod  of  the osc i l l a t ion  T = 27r /w  

t + T  

f C C E t t s = T  -1 -~-(~SE x 6 H )  d t = ~ (  xH, + E , ' x H ' )  (1.14) 

The a s t e r i s k  denotes  the ope ra t i on  of  comp lex  conjugat ion.  The phys ica l  ba s i s  of  the r e q u i r e m e n t s  
of Eq. (1.13) is  tha t  wave a m p l i t u d e , d a m p i n g  in the d i r e c t i o n V , b e  equ iva len t  to the damping  in the d i r ec t ion  
of  e n e r g y  t r a n s f e r ,  i .e . ,  under  the condi t ion that  vs  > 0. The l a t t e r  condi t ion is ac tua l ly  fulfi l led,  s ince  
f r o m  Eq. (1.14) and the f i r s t  equat ion  of (1.6) i t  follows that  

s : ( i6n(o) - I  c 2 [(k + k , )  ( E ' E . ' )  n - -  k ,  (E'n)  E , '  - -  k ( E , ' n )  E'] 

Vs = (8z~) -1 c 2 ([ E' [2 _ I E'n [~) >/0 
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For l inear e lect romagnet ic  waves in an anisotropic medium the condition vs _> 0 was derived in [13]. 
In essence ,  the derivation of this resu l t  res t s  only on the f i rs t  equation of (1.4) and the assumption of paral-  
le l ism between the vectors  Re k and Im k. In a nonlinear conductor,  waves of small  amplitude possess ing a 
phase velocity cannot be purely longitudinal, so that the value vs p roves  to be s t r ic t ly  positive. 

Using the identity 

R e k I m k - ~  ~/~lmk ~ 

we t r ans fo rm inequality (1.13) to the more convenient fo rm 

Im • > 0 (1.15) 

( ~  = o)14ua, z p  2 = c~k~,~/t6n~(~ ~) 

From the dispersion equation (1.7), two possible values are determined for u2: ~l~ f rom the condi- 
tion P2(}; u 2) = 0, ~22fromthe condition Ps(}; n2, ~) = 0, where } = - - i~ .  For  the value ~u2 l, we obtain the 
express ion  

~2• = ~3 + i~2 

satisfying inequality (1.15). The value of ~ 2 2  is determined by the formula 

+ /-[(coda + )~sinSa) Qa Jr )~ (sin2a + ~.cos~a) ~s]} 

F rom the las t  express ion it  follows that condition (1.15) is always satisfied for h ) 0. Therefore ,  the 
requi rement  adl > 0 is a sufficient condition for absorption of waves in the medium. On the other hand, for 
~d < 0 and a = ~/2r the requi rement  of (1.15) is broken, and the amplitude of oscil lat ions will increase  along 
the path of the waves.  

Thus, the requi rement  a d > O is s imultaneously the c r i t e r ion  for stability of the homogeneous state,  
and the c r i t e r ion  for absorpt ion of waves propagating f rom a source of periodic osci l lat ions.  Fur the rmore ,  
the range of directions n, in which absorpt ion of oscil lations of a given frequency occurs ,  differs for the 
case (r d < 0 f rom the range of directions determined by Eq. (1.11), which coi~responds to damping over  
time of periodic dis turbances along n with a given wavelength. In real i ty ,  for )t < 0 inequality (1.15) is ful- 
filled for the fbllowing range of values of ~: 

(1.16) 
a o = arc tg  [()~ -[- ~)1 /z  I)~ I-'h(t ~ -  f l~)- l / , l  

A range of absorption directions exists for any cr d < 0 and fills the inter ior  of a cone, the axis of 
which is parallel  to the vec tor  E o, and whose aper ture  is equal to o~ o. For  fixed )~ ~ --1 the angle s o will be 
a monotonic function of 9 2, so that for an increase" in ~2 f rom zero  to ~o the value of so changes f rom s o = 
a .  = a rc  tan (J h l ]/2) to So = ~2~r-a , .  With increase  in frequency the field of direct ions for oscillation am-  
plification contrac ts ,  if ]~1 < 1, and expands for [hi > 1. The lines of constant value for the quantity V = 
tan 2 s o in the plane (l~tl, 9"2) are  depicted in Fig. 1. 

2 .  T h e  P r o b l e m  o f  S t a b i l i t y  in  a B o u n d e d  

R e g i o n .  E n e r g y  R e l a t i o n s h i p s  

We will examine the stability of the state of Eq. (1.3) in a cyl indrical  region D - {(xl, x2) E G, Ix31< h}, 
where x i a re  Car tes ian coordinates ,  and G is an a rb i t r a ry  two-dimensional  region. 

The state of Eq. (1.3) is rea l ized by passage of a constant cur ren t  through ihe conductor f rom an out- 
side source.  We will consider  the ends of the cyl inder  to be ideally conductive, while its la tera l  surface 
and the external network are  surrounded by a nonconduetive medium close to a vacuum in dielectr ic  p rop-  
e r t ies .  In principle,  the e lec t r ic  field outside the region D and the induced magnetic field in the entire 
space can be uniquely determined f rom the s tat ionary field equations with the usual boundary conditions at 
the interface of the media and at infinity. 
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2 

In studying the problem of s tat ionary-state  stability it is 
natural to examine fluctuations which meet  the following requi re-  
ments:  

1) the initial conditions together with the physical condi- 
tions at the boundaries of the medium uniquely determine the 
disturbance field throughout the space for t > 0; 

2) the dis turbances examined cannot a r i se  in the region 
D for t > 0, if they are  absent at  t = 0. 

Disturbances satisfying these conditions will be called 
admissible .  In o rde r  to ensure  the sat isfact ion of requi rements  
1) and 2), we will examine the Cauchy problem for dis turbances 
throughout the entire space, assuming that the initial distributions 

5E(x, 0) = bE0 (x), 8It (x, 0) = 5It0 (x) (2.1) 

Fig. 1 
are  sufficiently smooth,  and identically equal to zero outside re-  
gion D, and at the boundary S. 

The field disturbances 5E-, 5I{- within D and 6E +, 5H + outside D must  sat isfy the condition of con- 
tinuity of tangential components on the boundary of the region 

6E~- = 5E; + = 0 (x E S,) (2.2) 

6F~.- = 5E+. +, 6Hc = 6H~. + (x ~-s~) 

Here,  S 1 are the face e lect rodes;  S 2, the lateral  surface of the cylinder.  

With such a formulation,  dis turbances concentrated within the region D for t = 0 can propagate into 
the surrounding medium for t > 0. The disturbance field will be equal to zero within the changing region 
D , ,  bounded by the forward wave front S , ,  propagating at the speed of light. The closed surface S ,  is a 
charac te r i s t i c ,  and at a moment  in time t is an envelope of a family of spherical  fronts of radius ct with 
centers  at  points in the boundary of S. As a consequence of the continuity of the initial distributions of Eq. 
(2.1), equal to zero  onS ,  the disturbance field at  the wave front S .  will tend to zero 

bE (x. ,  t) = 6H (x . ,  t) = 0 (x . [~  8.) (2.3) 

For small  d is turbances ,  a resul t  may be obtained analogous to the Poynting theorem of conventional 
e lec t rodynamics  [14] 

V V E 

w = |(6E) ~ -t- (gH)~I / 8~ 

(2.4) 

Here,  V is an a r b i t r a r y  volume, bounded by the surface E, and v is the external normal  to E. In the 
derivat ion of Eq. (2.4) the f i rs t  two equations of sys tem (1.4) and the continuity condition (2.2) were used. 
Let V be the volume of the complete disturbance field D . .  Then, the reduction to zero of the surface in- 
tegral  in Eq. (2.4) follows f rom Eq. (2.3). Neglecting dissipation of the disturbance in the external network 
due to the relat ively high conductivity of its e lements ,  we l imit  the volume integral  in the r ight side of Eq. 
(2.4) to the region D. As a result ,  we have 

I O~tdD=-- f 5j6EdD 
D. D 

Using the formula for time differentiat ion of the integrals  taken over  the moving volume D ,  

--~ ]dD = dD ~ c /dS  (2.5) 
D. 8, 
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a s s u m i n g  h e r e i n  that  f = w and cons ide r ing  Eq. {2.3), we p roceed  to the equat ion  

= - -  [zd ((tEll) ~ + z (SE• dD (2.6) 

W , =  I w d D '  61i~1=(16E) 1, 5 E •  I = E  o / E  o 
D, 

As a consequence  of  the l i nea r i ty  of Eqs .  (2.1), (2:2) fo r  d i s t u r b a n c e s ,  the cont inuous solut ion is 
unique,  if  the equat ion with neu t ra l  ini t ial  condi t ions  [Eq. (2.1)] has  only a t r iv ia l  solut ion.  It fol lows f r o m  
Eq. (2.6) that  

d W , / d t ~  8 n z ~ W , ,  z~ = max(z, [zd] ) 

In tegra t ing  this inequal i ty ,  we obtain  W ,  (t) _< W ,  (0) exp 8 ~ m t .  F o r  W ,  (0) = 0 the funct ion W ,  (t) r e -  
mains  equal  to z e r o  a t  subsequen t  t i m e s ,  and consequent ly ,  the so lu t ion  is unique. This r e s u l t  r e m a i n s  
val id  even for  the case  of an  inhomogeneous  s t a t i ona ry  s ta te ,  when the e l e c t r o d e  loca t ion  o r  g e o m e t r y  of  
the r eg ion  D do not  p e r m i t  a solut ion o f  Eq. (1.3)o F o r  an  i ahomogeneous  c u r r e n t  d i s t r ibu t ion ,  ins tead  of  
the cons tan t  cr m,  one m u s t  take m a x  ~rm~X) fo r  x E D. 

We will  define the s t a t i o n a r y  s ta te  in r eg ion  D as  s table  if, on the a v e r a g e ,  fo r  t --r the e n e r g y  of  
admiss ib l e  d i s t u r b a n c e s  in this  r eg ion  sa t i s f i e s  the condi t ion 

W (t) .= i wdD ~<~ W (0) (2.7) 
D 

By ins tab i l i ty  of the s t a t i o n a r y  s ta te  in D we unders t and  the abi l i ty  of  admis s ib l e  d i s t u r b a n c e s  to in-  
c r e a s e  o v e r  t ime .  For  cr d < 0 the re  a lways  ex i s t  d i s t u rbances  whose  e n e r g y  i n c r e a s e s  o v e r  the c o u r s e  of 
s o m e  ini t ial  t ime in te rva l .  In fact ,  examin ing  d i s t u rbances  for  which 6E•  = 0 a t  t = 0, f r o m  Eq. (2.6), we 
obtain  dW/d t  > 0 for  t = 0. 

Fo r  the case  r d < 0 the ex i s t ence  of d i s t u rbances  6E i n c r e a s i n g  for  t ~ in D is e a s y  to e s t ab l i sh  
fo r  the homogene ous  s ta te  of  Eq.  (1.3), s ince  s y s t e m  (1.4) admi t s  a so lu t ion  on D of  the f o r m  

6E = 5Eo (z3) e x p  (-- 4g~dt ) ca, 6H __~ 0 

sa t i s fy ing  the condi t ion 5E~ a t  the e l e c t r o d e s .  We note that  fo r  potent ial  d i s t u rbances  in D of  5E the condi-  
t ion  6E0(x) = 0 on the en t i r e  b o u n d a r y  S b e c o m e s  u n n e c e s s a r y ,  o the rwi se  the p rob l em of  d e t e r m i n i n g  the 
potent ia l  will  b e c o m e  i n c o r r e c t .  

An example  of  tu rbulen t  d i s tu rbance  i n c r e a s i n g  without  l imi t  is e a s i l y  c o n s t r u c t e d  for  the case  of  a 
conduct ive  l a y e r  be tween  two infinite plane e l e c t r o d e s  Ix31< h. We will  s eek  a tu rbulen t  solut ion fo r  6E in 
the f o r m  

~E = u (x~, z2) g (t) e3 

The bounda ry  condi t ion  5Ev = 0 will  now be fulfiUed au toma t i ca l ly .  M o r e o v e r ,  in this ca se ,  the p r o b -  
l e m  of inne r  d i s tu rbance  is comple t e ly  s e p a r a t e  f r o m  that  of  ou te r .  E l imina t ing  f r o m  Eq.  (1.4) the v e c t o r  
5H, we p roceed  to the equat ions  

V~U --  IZu = O, g" + 4nZdg' --  c2~tg .= 0 

A finite solut ion to the Helmhol tz  equat ion,  damping  at infini ty,  may  be taken as 

u = u (r) = Yo ( V - L ' ~ r ) ,  r = ~ z~2, ~ < 0 

The equat ion for  the function g(t) has  the following gene ra l  so lut ion:  

g = C1 exp ~it + C~ exp ~ t  

~1,~ = - -  2~za _--t- (4~zd ~ ~ c~P.) '/2 

I n a s m u c h  as Re ~,2 > 0 for  ~d < 0, the solut ions  found i n c r e a s e  for  t ~r162  
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From Eq. (2.6) it follows that for admissible disturbances dW,/dt _< 0, if cr d > 0. Therefore, W, (t) _< 
W, (0) = W(0), and the condition of Eq. (2.7) will be filled in this case, due to the inequality W(t) _< W, (t). 
For stationary current distributions, not necessarily homogeneous, a more powerful result can be ob, 

rained-asymptotic stability of these distributions for cr d > 0, i.e., 

lira WE (t) = 0, WE (t) = g~ (6E)~dD (2.8) 
t~co  

D 

If Eq. (2.8) is fulf i l led,  d i s t u rba nc e s  5E and 5j tend to ze ro  for  t ~ p r ac t i ca l l y  e v e r y w h e r e  in the r e -  
gion D. 

We will now tu rn  to a p roof  of the a s s e r t i o n  of  Eq. (2.8). We a s s u m e  that  the field of  d i s t u rbances  
bE and 6H is cont inuous ly  d i f fe rent iab le  twice with r e s p e c t  to x and t within and without  the r eg ion  D. If at  
the idea l ly  conduct ive  por t ions  of  the bounda ry  S the re  o c c u r s  a d iscont inui ty  of  the componen t  5Ev o r  6H~, 
we will  a s s u m e  that  this does  not l ead  to v io la t ion  of  the usual  ru l e s  of  d i f fe ren t ia t ion  with r e s p e c t  to t ime 
of the f ield i n t e g r a l s ,  taken o v e r  a f ixed vo lume.  (In the m a j o r i t y  of  c a s e s  these  ru le s  a r e  p r e s e r v e d  even  
for  spa t ia l ly  d i scon t inuous  d is t r ibu t ions . )  The funct ion W .  (t) in the case  ~r d > 0 is non inc reas ing  and 
l imi ted  below (W. -> 0). T h e r e f o r e ,  fo r  t ~ ~ 1 7 6  there  ex i s t s  a lira W ,  (t) = W ,  (~). Consequent ly ,  the im-  
p r o p e r  in t eg ra l  

co 

I = j" (dW, / dt) dt = W ,  (c~)  - -  W ,  (0)  (2.9) 
0 

c o n v e r g e s .  

F r o m  Eq. (2.6) the re  follows the a p p r o x i m a t i o n  

0 < W  E ~ (8n**) -t I dW, I dt I, ~, = rain (6, ~a) 
x ~ D  

T h e r e f o r e ,  ins tead  of Eq. (2.8), it is  su f f ic ien t  to prove that  

lira dW. /dt = 0 (2.10) 
t~oo 

The condi t ion of  Eq. (2.10) wil l  ex is t ,  i f  a long with c o n v e r g e n c e  of  the in tegra l  I the de r iva t ive  of the 
in tegrand  

[d2W,/dt2]<~const (O<( t~cr (2.11) 

is un i fo rmly  l imi ted .  

We will  e s t ab l i sh  the val id i ty  of Eq. (2.11). Di f fe ren t ia t ing  Eq. (2.6) with r e s p e c t  to t ime ,  we obtain  

dzW, 2 i  (zaSEi I a O --  - -  -~-  6E II + 65E• ~ 6E•  dD dt ~ 
D 

We will eva lua te  the r igh t  s ide of the l a s t  inequal i ty  

D D D 

I /  ~ \2 \'/2 
<2:* VS~---#--~) ~ydSE) dD) , ~* =max(z,~d) (2.12) 

D x ~ D  

The  Cauchy- -Bunyakovski  inequal i ty  was  u t i l ized h e r e ,  as  well  as  the condi t ion WE(t) <_ W .  (t) _< 
W .  (0) = W(0). It  r e m a i n s  to be p roved  that  the vo lume in t eg ra l  of  (06E' /~t)  2 is un i fo rmly  l imi ted  o v e r  t. 
To ach ieve  this ,  we e l imina te  the v e c t o r  5H f r o m  s y s t e m  (1.4) by d i f ferent ia t ion .  As a r e su l t ,  we have the 
fol lowing equat ion:  

~ rot rot 6E + 4 g  (~d 0 0 - ~ 6 E +  c ~ = 

(2.13) 
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Equation (2.13) examines the conductive region D and the portion of the vacuum occupied by the dis- 
turbance,  where ~ = ~d = 0. Scalarly multiplying Eq. (2.13) by O6E/gt,  and integrating the equality ob-  
tained over  the region D , ,  we have 

D 

If the conditions at  the wave front [Eq. (2.3)] are  differentiated with respec t  to time and a resul t  of the 
Maxwell equations in a v a c u u m  for a point on the surface S .  is used, we obtain 

Using Eq. (2.15) in Eq. (2.5), in which we assume 

x ~  S ,  (2.15) 

Eq. (2.14) takes on the form 

dR ~ -k ~ 6E.L dD dt ~ ~ d 6E [I 

F rom the last  equation it follows that R(t) _<R(0) for t > 0. Then, f rom Eq. (2.12), we obtain the eval-  
uation required 

I ~ W ,  / ~t~ I < 16~* V ~  

The constants W(0) and R(0) are  determined by setting initial distributions of Eq. (2.1). 

We will now examine the behavior  of the integral  Joulean dissipation in the region D for application 
of small  dis turbances on the homogeneous state of Eq. (1.3). Firs t ,  we will clar ify the conditions under 
which the s ta t ionary state is charac te r i zed  by a m i n i m u m  in integral  dissipation in compar ison  to the non- 
s ta t ionary state produced by application of the initial dis turbances.  In o rder  that the function 

q = I - f q (E) 
D D 

examined in some class  of f ie lds ,have a minimum for the s tat ionary solution E 0, its f i rs t  variat ion must  go 
to zero 

6Q = I (~ ~- ~a) E~ = 0 
D 

From Eq. (2.13), it is possible to obtain the relat ionship 

d 
d~ 6 Q q- 4aza -~y 0Q = c 2 (5 -b zd) i (E~ x rot 5E) v d S  

S 

which indicates that the requi rement  5Q = 0 cannot be fulfilled, if a rb i t r a ry  dis turbances admissible  in the 
analysis  of stability are  considered.  The condition 6Q = 0 is fulfilled for potential dis turbances 6E = -~75~ 
in the case when the s ta t ionary field E0 is homogeneous,  and a constant potential difference is maintained 
on the e lect rodes .  In fact, under these conditions 

6Q = - (6 + ~a) f d iv  (Eo6q)) d D  = (6 -k ~a) EoG8 ((p§ - -  qo_) - -  0 
D 
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Here,  G is the electrode area,  and 5(~v+-r is the interelectrode potential disturbance.  If 5Q = 0, 
then minimum Q will be real ized in the s tat ionary solution of Eq. (1.3) under the condition that 

Oeq d:q 2 1 y (6n• dD > 0 \ogioE:/ " - -~- ~-~ 
D D 

The a rb i t r a ry  constants appearing here are  calculated for E = Eo. The condition 62Q > 0 is fulfilled 
for a rb i t r a ry  dis turbances ,  if at  the point E = E 0 

d~q/ d E ~ = E d ~ j / d E ~ - 4 - 2 d ] / d E ) O ,  d q / d E = E d j / d E . - k j > O  (2.16) 

In o rder  to use the condition 52Q > 0 for any s ta t ionary solution, Eq. (2.16) must  be fulfilled at all 
points of the v o l t - a m p e r e  charac te r i s t i c .  Then, the local dissipation q(E) will be a monotonically inc reas -  
ing convex function. 

For  potential dis turbances 5E = -V6~v, 6H = 0 in a cyl indrical  region with face e lec t rodes ,  of neces-  
si ty 5E• = 0, so that there is no need to examine the second inequality of Eq. (2.16). 

The sat isfact ion of the f i r s t  condition of Eq. (2.16) at all points of the v o l t - a m p e r e  curve is a s t r i c t e r  
l imitation on t he shape  of the function j(E), than the stability requi rement  Crd(E) > 0. 

We will show that for a single-valued function j(E), due to the positive sign of d2q/dE 2, the function 
~d(E) will be positive. We will assume that j(E) is a twice continuously differentiable function, and ~(0)> 0. 
We assume that the f i rs t  inequality of Eq. (2.16) is sat isfied everywhere ,  but there exists a value E = E 1, 
f o r w h i e h  Crd(E 1) _ 0 .  Inasmuch as ad(O) = ~ (0 )>0 ,  then, ~d(E)> 0 on some interval  0 < E < E 6. The set  
of E 6 values is bounded above, since ~d(El) _ 0. Hence, it has an exact upper limit, E 2. From the con- 
tinuity of the function Crd(E), and the proper t ies  of an upper limit, it follows that ~d(E2) = 0. For  any E in 
the interval  (0, E2), we have 

/ dr d \ 
- ~d (E) = ~ (E~) = ~ (E) - ~ - ) ~ = E ,  (E~ - E) ,  E , e  (~, E~) 

Thence, we conclude thkt in an a rb i t r a r i ly  small  left-hand neighborhood of the point E 2, there are 
points E . ,  at which dcrd/dE = d2j/dE 2 < 0. Then, it follows f rom the continuity of the function d2j/dE 2 at 
the point E2:  

(d 2] / dE~)E=E z -~< 0 

But at E = E 2, according to our assumption,  the f i rs t  inequality of Eq. (2.16) is fulfilled, which in view 
of the condition ~rd(E 2) -- 0 takes on the form 

(d2/ / dE2)z=.~ > 0 

The contradict ion obtained demonst ra tes  the impossibil i ty of the existence of a point E 1. 

The converse  of the proposit ion proved above is not valid. It is simple to const ruct  examples of the 
function j(E), for which ~d > 0, but q(E) will not be a convex function at all points. 

In [9] it was at tempted to establish equivalency between the stability requi rement  ~d > 0, and the 
principle of minimal entropy production in the s ta t ionary state.  The la t ter  condition, however,  was re -  
ptacedby the principle of minimum Joulean dissipation for a single-valued function j(E) and constant voltage 
on the e lec t rodes .  The application of special  kinetic models shows that the s tat ionary state is not charac-  
ter ized by minimum entropy production [2]. 

Within the f ramework  of the model of a nonlinear conductive medium studied herein,  the stability re -  
quirement  cr d > 0 follows f rom the requi rement  of minimum Q in any s ta t ionary state of Eq. (1.3), in the 
class  of dis turbances which reduce the f i r s t  variat ion 5Q to zero.  However, this ext remal  principle,  to 
speak in general ,  is not applicable to media with a rb i t r a ry  positive differential  conductivity. In connection 
with this, we note that the conclusion of coincidence in sign of the quantities 52Q and Crd, made in [9], is in 
e r r o r :  in calculating the increment  AQ for the case 5E = 5Eli a t e rm of the form ~2 E (d2j/dE 2) (SE [[)2 was 
los t ,  related to the curvature  of the v o l t - a m p e r e  charac te r i s t i c .  The integral  contribution of this t e rm to 
52Q completely balances the second var iat ion of the energy flux in the case of a nonlinear medium and does 
not effect the energy change rate of the dis turbances.  
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